๐งฌ Genetics and Genomics
Biopython
Description: A set of freely available tools for biological computation.
Use Case: Used for sequence analysis, structure analysis, phylogenetics, and more in genetics and genomics research.
Documentation: Biopython Documentation
GitHub Repository: Biopython GitHub
DEAP (Distributed Evolutionary Algorithms in Python)
Description: An evolutionary computation framework for rapid prototyping and testing of ideas.
Use Case: Implementing genetic algorithms and genetic programming for solving complex genetic data analysis problems.
Documentation: DEAP Documentation
GitHub Repository: DEAP GitHub
Gensim
Description: A robust semantic modeling library.
Use Case: Analyzing genetic sequences as text using Natural Language Processing (NLP) for semantic similarity, topic modeling, etc.
Documentation: Gensim Documentation
GitHub Repository: Gensim GitHub
Matplotlib
Description: A plotting library for creating static, animated, and interactive visualizations in Python.
Use Case: Visualizing genetic data, such as gene expression patterns, genomic annotations, and phylogenetic trees.
Documentation: Matplotlib Documentation
GitHub Repository: Matplotlib GitHub
Numpy
Description: The fundamental package for scientific computing with Python.
Use Case: Handling numerical data for genetic and genomic calculations, including statistical analysis and manipulation of large genomic datasets.
Documentation: Numpy Documentation
GitHub Repository: Numpy GitHub
Pandas
Description: Data analysis and manipulation library.
Use Case: Organizing and analyzing genomic datasets, including handling large-scale genetic data tables and complex data queries.
Documentation: Pandas Documentation
GitHub Repository: Pandas GitHub
PyGenomeTracks
Description: A library to plot beautiful and highly customizable genome browser tracks.
Use Case: Creating high-quality visual representations of genomic data and annotations across multiple scales.
Documentation: PyGenomeTracks Documentation
GitHub Repository: PyGenomeTracks GitHub
PyVCF
Description: A VCF (Variant Call Format) parser for Python.
Use Case: Reading, modifying, and writing VCF files in Python, which is useful for analyzing genetic variations.
Documentation: PyVCF Documentation
GitHub Repository: PyVCF GitHub
Scikit-allel
Description: A Python package for exploring and analyzing genetic variation data.
Use Case: Analysis of large-scale genetic variation data, including population genetics analyses and visualization of genetic data.
Documentation: Scikit-allel Documentation
GitHub Repository: Scikit-allel GitHub
SciPy
Description: An open-source Python library used for scientific and technical computing.
Use Case: Statistical computations and signal processing that are common in genetic and genomic data analysis.
Documentation: SciPy Documentation
GitHub Repository: SciPy GitHub
Seaborn
Description: A Python data visualization library based on Matplotlib.
Use Case: Creating informative and attractive statistical graphics for genetics and genomics data.
Documentation: Seaborn Documentation
GitHub Repository: Seaborn GitHub
TensorFlow
Description: An end-to-end open-source platform for machine learning.
Use Case: Building machine learning models for predicting genetic outcomes, analyzing gene expression data, and more advanced genomics research.
Documentation: TensorFlow Documentation
**GitHub
Repository**: TensorFlow GitHub
Last updated