๐ Data Science and Statistics
Altair
Description: Declarative statistical visualization library for Python.
Use Case: Creating clear and effective statistical visualizations.
Documentation: Altair Documentation
GitHub Repository: Altair GitHub
Apache Spark
Description: Unified analytics engine for large-scale data processing.
Use Case: Handling big data processing and analytics, often used with PySpark, the Python API for Spark.
Documentation: Apache Spark Documentation
GitHub Repository: Apache Spark GitHub
Bokeh
Description: A library for creating interactive visualizations for modern web browsers.
Use Case: Building complex interactive visualizations for data exploration and presentation.
Documentation: Bokeh Documentation
GitHub Repository: Bokeh GitHub
CatBoost
Description: An open-source gradient boosting on decision trees library.
Use Case: Efficient and powerful categorical data handling for machine learning tasks.
Documentation: CatBoost Documentation
GitHub Repository: CatBoost GitHub
Dask
Description: Parallel computing library that scales the existing Python ecosystem.
Use Case: Scalable analytics that seamlessly works with Numpy, Pandas, and Scikit-Learn.
Documentation: Dask Documentation
GitHub Repository: Dask GitHub
Dash by Plotly
Description: A Python framework for building analytical web applications.
Use Case: Creating interactive, web-based data dashboards.
Documentation: Dash Documentation
GitHub Repository: Dash GitHub
H2O
Description: Open-source, in-memory, distributed, fast, and scalable machine learning and predictive analytics platform.
Use Case: Performing machine learning tasks on large datasets.
Documentation: H2O Documentation
GitHub Repository: H2O GitHub
Jupyter Notebook
Description: An open-source web application that allows you to create and share documents that contain live code, equations, visualizations, and narrative text.
Use Case: Interactive computing and data visualization, ideal for exploratory data analysis.
Documentation: Jupyter Documentation
GitHub Repository: Jupyter Notebook GitHub
Keras
Description: An open-source software library that provides a Python interface for artificial neural networks.
Use Case: Designing and deploying deep learning models.
Documentation: Keras Documentation
GitHub Repository: Keras GitHub
LightGBM
Description: A gradient boosting framework that uses tree-based learning algorithms.
Use Case: Highly efficient and scalable machine learning, especially for large-scale data.
Documentation: LightGBM Documentation
GitHub Repository: LightGBM GitHub
Matplotlib
Description: A comprehensive library for creating static, animated, and interactive visualizations in Python.
Use Case: Data visualization and graphical plotting.
Documentation: Matplotlib Documentation
GitHub Repository: Matplotlib GitHub
NumPy
Description: The fundamental package for numerical computation in Python.
Use Case: Handling numerical operations essential in data processing and analysis.
Documentation: NumPy Documentation
GitHub Repository: NumPy GitHub
Pandas
Description: A powerful data analysis and manipulation library.
Use Case: Data cleaning, transformation, and analysis.
Documentation: Pandas Documentation
GitHub Repository: Pandas GitHub
Plotly
Description: An interactive graphing library for Python.
Use Case: Interactive data visualization
and dashboards.
Documentation: Plotly Documentation
GitHub Repository: Plotly GitHub
PyCaret
Description: An open-source, low-code machine learning library in Python that automates machine learning workflows.
Use Case: Simplifying the machine learning workflow for complex tasks.
Documentation: PyCaret Documentation
GitHub Repository: PyCaret GitHub
Scikit-learn
Description: A machine learning library in Python.
Use Case: Implementing machine learning algorithms including classification, regression, clustering, and dimensionality reduction.
Documentation: Scikit-learn Documentation
GitHub Repository: Scikit-learn GitHub
SciPy
Description: A Python-based ecosystem of open-source software for mathematics, science, and engineering.
Use Case: Scientific and technical computations.
Documentation: SciPy Documentation
GitHub Repository: SciPy GitHub
Seaborn
Description: A statistical data visualization library based on Matplotlib.
Use Case: Creating attractive and informative statistical graphics.
Documentation: Seaborn Documentation
GitHub Repository: Seaborn GitHub
Statsmodels
Description: A Python module that allows users to explore data, estimate statistical models, and perform statistical tests.
Use Case: Statistical modeling and hypothesis testing.
Documentation: Statsmodels Documentation
GitHub Repository: Statsmodels GitHub
TensorFlow
Description: An end-to-end open-source platform for machine learning.
Use Case: Building and training machine learning models.
Documentation: TensorFlow Documentation
GitHub Repository: TensorFlow GitHub
XGBoost
Description: An optimized distributed gradient boosting library.
Use Case: Efficient and scalable machine learning with gradient boosting.
Documentation: XGBoost Documentation
GitHub Repository: XGBoost GitHub
Last updated