LogoLogo
  • ๐Ÿ‘‹Welcome!
  • Disciplines
    • ๐Ÿš€ Aerospace Engineering
    • ๐Ÿ“’ Accounting and Finance
    • ๐ŸŒฑ Agriculture and Forestry
    • ๐Ÿบ Archaeology
    • ๐Ÿ™๏ธ Architecture and Urban Planning
    • ๐ŸŽจ Art and Art History
    • ๐Ÿš— Automotive Engineering
    • ๐Ÿ”ฌ Biology and Chemistry
    • ๐Ÿงช Chemical Engineering
    • ๐Ÿ’ป Computer Science and Engineering
    • ๐Ÿ’ฌ Communication Studies
    • ๐Ÿณ Culinary Arts
    • ๐Ÿ“Š Data Science and Statistics
    • ๐Ÿ’น Economics and Finance
    • ๐Ÿ“š Education
    • ๐ŸŒ Environmental Law and Policy
    • ๐ŸŒฟ Environmental Science
    • ๐Ÿ‘— Fashion and Textile Design
    • ๐ŸŒ Geography and Geosciences
    • ๐Ÿงฌ Genetics and Genomics
    • ๐Ÿฅ Health and Medicine
    • ๐Ÿ“– History
    • ๐Ÿจ Hospitality and Tourism
    • ๐Ÿ“ฐ Journalism and Media Studies
    • โš–๏ธ Law
    • ๐Ÿ—ฃ๏ธ Linguistics
    • ๐ŸŒŠ Maritime Studies and Oceography
    • โž— Mathematics
    • ๐Ÿ› ๏ธ Mechanical Engineering
    • ๐ŸŽต Music and Musicology
    • ๐ŸŽญ Performing Arts
    • ๐Ÿ’ญ Philosophy
    • ๐ŸŒŒ Physics and Astronomy
    • ๐Ÿ›๏ธ Political Science and International Relations
    • ๐Ÿง  Psychology
    • ๐Ÿ•Š๏ธ Religious Studies
    • ๐Ÿ‘ฅ Social Sciences
    • ๐Ÿƒโ€โ™‚๏ธ Sports Science
    • ๐Ÿพ Veterinary Science
  • Collaborating
    • ๐ŸคHow to contribute
Powered by GitBook
On this page
  • Altair
  • Apache Spark
  • Bokeh
  • CatBoost
  • Dask
  • Dash by Plotly
  • H2O
  • Jupyter Notebook
  • Keras
  • LightGBM
  • Matplotlib
  • NumPy
  • Pandas
  • Plotly
  • PyCaret
  • Scikit-learn
  • SciPy
  • Seaborn
  • Statsmodels
  • TensorFlow
  • XGBoost

Was this helpful?

Edit on GitHub
  1. Disciplines

๐Ÿ“Š Data Science and Statistics

Previous๐Ÿณ Culinary ArtsNext๐Ÿ’น Economics and Finance

Last updated 1 year ago

Was this helpful?

Altair

  • Description: Declarative statistical visualization library for Python.

  • Use Case: Creating clear and effective statistical visualizations.

  • Documentation:

  • GitHub Repository:

Apache Spark

  • Description: Unified analytics engine for large-scale data processing.

  • Use Case: Handling big data processing and analytics, often used with PySpark, the Python API for Spark.

  • Documentation:

  • GitHub Repository:

Bokeh

  • Description: A library for creating interactive visualizations for modern web browsers.

  • Use Case: Building complex interactive visualizations for data exploration and presentation.

  • Documentation:

  • GitHub Repository:

CatBoost

  • Description: An open-source gradient boosting on decision trees library.

  • Use Case: Efficient and powerful categorical data handling for machine learning tasks.

Dask

  • Description: Parallel computing library that scales the existing Python ecosystem.

  • Use Case: Scalable analytics that seamlessly works with Numpy, Pandas, and Scikit-Learn.

Dash by Plotly

  • Description: A Python framework for building analytical web applications.

  • Use Case: Creating interactive, web-based data dashboards.

H2O

  • Description: Open-source, in-memory, distributed, fast, and scalable machine learning and predictive analytics platform.

  • Use Case: Performing machine learning tasks on large datasets.

Jupyter Notebook

  • Description: An open-source web application that allows you to create and share documents that contain live code, equations, visualizations, and narrative text.

  • Use Case: Interactive computing and data visualization, ideal for exploratory data analysis.

Keras

  • Description: An open-source software library that provides a Python interface for artificial neural networks.

  • Use Case: Designing and deploying deep learning models.

LightGBM

  • Description: A gradient boosting framework that uses tree-based learning algorithms.

  • Use Case: Highly efficient and scalable machine learning, especially for large-scale data.

Matplotlib

  • Description: A comprehensive library for creating static, animated, and interactive visualizations in Python.

  • Use Case: Data visualization and graphical plotting.

NumPy

  • Description: The fundamental package for numerical computation in Python.

  • Use Case: Handling numerical operations essential in data processing and analysis.

Pandas

  • Description: A powerful data analysis and manipulation library.

  • Use Case: Data cleaning, transformation, and analysis.

Plotly

  • Description: An interactive graphing library for Python.

  • Use Case: Interactive data visualization

and dashboards.

PyCaret

  • Description: An open-source, low-code machine learning library in Python that automates machine learning workflows.

  • Use Case: Simplifying the machine learning workflow for complex tasks.

Scikit-learn

  • Description: A machine learning library in Python.

  • Use Case: Implementing machine learning algorithms including classification, regression, clustering, and dimensionality reduction.

SciPy

  • Description: A Python-based ecosystem of open-source software for mathematics, science, and engineering.

  • Use Case: Scientific and technical computations.

Seaborn

  • Description: A statistical data visualization library based on Matplotlib.

  • Use Case: Creating attractive and informative statistical graphics.

Statsmodels

  • Description: A Python module that allows users to explore data, estimate statistical models, and perform statistical tests.

  • Use Case: Statistical modeling and hypothesis testing.

TensorFlow

  • Description: An end-to-end open-source platform for machine learning.

  • Use Case: Building and training machine learning models.

XGBoost

  • Description: An optimized distributed gradient boosting library.

  • Use Case: Efficient and scalable machine learning with gradient boosting.

Documentation:

GitHub Repository:

Documentation:

GitHub Repository:

Documentation:

GitHub Repository:

Documentation:

GitHub Repository:

Documentation:

GitHub Repository:

Documentation:

GitHub Repository:

Documentation:

GitHub Repository:

Documentation:

GitHub Repository:

Documentation:

GitHub Repository:

Documentation:

GitHub Repository:

Documentation:

GitHub Repository:

Documentation:

GitHub Repository:

Documentation:

GitHub Repository:

Documentation:

GitHub Repository:

Documentation:

GitHub Repository:

Documentation:

GitHub Repository:

Documentation:

GitHub Repository:

Documentation:

GitHub Repository:

Altair Documentation
Altair GitHub
Apache Spark Documentation
Apache Spark GitHub
Bokeh Documentation
Bokeh GitHub
CatBoost Documentation
CatBoost GitHub
Dask Documentation
Dask GitHub
Dash Documentation
Dash GitHub
H2O Documentation
H2O GitHub
Jupyter Documentation
Jupyter Notebook GitHub
Keras Documentation
Keras GitHub
LightGBM Documentation
LightGBM GitHub
Matplotlib Documentation
Matplotlib GitHub
NumPy Documentation
NumPy GitHub
Pandas Documentation
Pandas GitHub
Plotly Documentation
Plotly GitHub
PyCaret Documentation
PyCaret GitHub
Scikit-learn Documentation
Scikit-learn GitHub
SciPy Documentation
SciPy GitHub
Seaborn Documentation
Seaborn GitHub
Statsmodels Documentation
Statsmodels GitHub
TensorFlow Documentation
TensorFlow GitHub
XGBoost Documentation
XGBoost GitHub
Page cover image