๐น Economics and Finance
ARCH
Description: Autoregressive Conditional Heteroskedasticity (ARCH) modeling in Python.
Use Case: Used for modeling and estimating volatility in financial markets.
Documentation: ARCH Documentation
GitHub Repository: ARCH GitHub
Bokeh
Description: A library for creating interactive visualizations for modern web browsers.
Use Case: Creating interactive, dynamic financial charts and visualizations.
Documentation: Bokeh Documentation
GitHub Repository: Bokeh GitHub
Dash by Plotly
Description: A Python framework for building analytical web applications.
Use Case: Developing interactive, web-based financial dashboards and applications.
Documentation: Dash Documentation
GitHub Repository: Dash GitHub
fbprophet
Description: A tool for producing high-quality forecasts for time series data that has multiple seasonality with linear or non-linear growth.
Use Case: Time series forecasting in finance, like stock price predictions or economic trend analysis.
Documentation: fbprophet Documentation
GitHub Repository: fbprophet GitHub
Matplotlib
Description: A library for creating static, animated, and interactive visualizations in Python.
Use Case: Standard tool for plotting and visualizing financial data and economic models.
Documentation: Matplotlib Documentation
GitHub Repository: Matplotlib GitHub
NumPy
Description: The fundamental package for numerical computation in Python.
Use Case: Basic numerical operations and calculations in finance and economics.
Documentation: NumPy Documentation
GitHub Repository: NumPy GitHub
Pandas
Description: A powerful data analysis and manipulation library.
Use Case: Data manipulation and analysis, especially useful for financial time-series data.
Documentation: Pandas Documentation
GitHub Repository: Pandas GitHub
Pandas-datareader
Description: A remote data access for Pandas.
Use Case: Extracting financial and economic data from various sources directly into Pandas DataFrames.
Documentation: Pandas-datareader Documentation
GitHub Repository: Pandas-datareader GitHub
Plotly
Description: An interactive graphing library.
Use Case: Creating interactive financial plots and dashboards.
Documentation: Plotly Documentation
GitHub Repository: Plotly GitHub
PyMC3
Description: Bayesian modeling and probabilistic machine learning with Theano.
Use Case: Applying Bayesian inference for econometric models and financial data analysis.
Documentation: PyMC3 Documentation
GitHub Repository: PyMC3 GitHub
QuantLib
Description: A library for quantitative finance.
Use Case: Modeling, trading, and risk management in finance.
Documentation: QuantLib Documentation
GitHub Repository: QuantLib GitHub
Quandl
Description: A platform for financial, economic, and alternative data.
Use Case: Accessing a wide range of financial and economic datasets.
Documentation: Quandl Documentation
GitHub Repository: Quandl GitHub
Scikit-learn
Description: Machine learning in Python.
Use Case: Predictive modeling and statistical analysis in economics and finance.
Documentation: Scikit-learn Documentation
GitHub Repository: Scikit-learn GitHub
Statsmodels
Description: Statistical modeling and econometrics in Python.
Use Case: Econometric and statistical analysis of financial data.
Documentation: Statsmodels Documentation
GitHub Repository: Statsmodels GitHub
TA-Lib
Description: A Python wrapper for technical analysis library.
Use Case: Performing technical analysis on financial market data.
Documentation: TA-Lib Documentation
GitHub Repository: TA-Lib GitHub
TensorFlow
Description: An end-to-end open-source platform for machine learning.
Use Case: Developing complex models for financial forecasting and analysis.
Documentation: TensorFlow Documentation
GitHub Repository: TensorFlow GitHub
XGBoost
Description: An optimized distributed gradient boosting library.
Use Case: Efficient and scalable machine learning models for economic and financial data analysis.
Documentation: XGBoost Documentation
GitHub Repository: XGBoost GitHub
Last updated