LogoLogo
  • ๐Ÿ‘‹Welcome!
  • Disciplines
    • ๐Ÿš€ Aerospace Engineering
    • ๐Ÿ“’ Accounting and Finance
    • ๐ŸŒฑ Agriculture and Forestry
    • ๐Ÿบ Archaeology
    • ๐Ÿ™๏ธ Architecture and Urban Planning
    • ๐ŸŽจ Art and Art History
    • ๐Ÿš— Automotive Engineering
    • ๐Ÿ”ฌ Biology and Chemistry
    • ๐Ÿงช Chemical Engineering
    • ๐Ÿ’ป Computer Science and Engineering
    • ๐Ÿ’ฌ Communication Studies
    • ๐Ÿณ Culinary Arts
    • ๐Ÿ“Š Data Science and Statistics
    • ๐Ÿ’น Economics and Finance
    • ๐Ÿ“š Education
    • ๐ŸŒ Environmental Law and Policy
    • ๐ŸŒฟ Environmental Science
    • ๐Ÿ‘— Fashion and Textile Design
    • ๐ŸŒ Geography and Geosciences
    • ๐Ÿงฌ Genetics and Genomics
    • ๐Ÿฅ Health and Medicine
    • ๐Ÿ“– History
    • ๐Ÿจ Hospitality and Tourism
    • ๐Ÿ“ฐ Journalism and Media Studies
    • โš–๏ธ Law
    • ๐Ÿ—ฃ๏ธ Linguistics
    • ๐ŸŒŠ Maritime Studies and Oceography
    • โž— Mathematics
    • ๐Ÿ› ๏ธ Mechanical Engineering
    • ๐ŸŽต Music and Musicology
    • ๐ŸŽญ Performing Arts
    • ๐Ÿ’ญ Philosophy
    • ๐ŸŒŒ Physics and Astronomy
    • ๐Ÿ›๏ธ Political Science and International Relations
    • ๐Ÿง  Psychology
    • ๐Ÿ•Š๏ธ Religious Studies
    • ๐Ÿ‘ฅ Social Sciences
    • ๐Ÿƒโ€โ™‚๏ธ Sports Science
    • ๐Ÿพ Veterinary Science
  • Collaborating
    • ๐ŸคHow to contribute
Powered by GitBook
On this page
  • Bokeh
  • EarthPy
  • Fiona
  • GDAL (Geospatial Data Abstraction Library)
  • Geopandas
  • Matplotlib
  • NumPy
  • Pandas
  • PyEcoLib
  • PyKrige
  • Rasterio
  • Scikit-learn
  • Seaborn
  • Statsmodels
  • Vega

Was this helpful?

Edit on GitHub
  1. Disciplines

๐ŸŒฑ Agriculture and Forestry

Previous๐Ÿ“’ Accounting and FinanceNext๐Ÿบ Archaeology

Last updated 1 year ago

Was this helpful?

Bokeh

  • Description: Interactive visualization library for modern web browsers.

  • Use Case: Creating interactive charts and visualizations for agricultural data analysis.

  • Documentation:

  • GitHub Repository:

EarthPy

  • Description: A collection of Python tools for working with spatial and environmental data.

  • Use Case: Simplifying the process of working with spatial data, particularly in environmental management and forestry.

  • Documentation:

  • GitHub Repository:

Fiona

  • Description: Tool for reading and writing spatial data files.

  • Use Case: Managing and manipulating geographic data in forestry and agriculture.

  • Documentation:

  • GitHub Repository:

GDAL (Geospatial Data Abstraction Library)

  • Description: Translator library for raster and vector geospatial data formats.

  • Use Case: Analyzing and manipulating geospatial data in agriculture and forestry.

Geopandas

  • Description: Extends Pandas for spatial data operations.

  • Use Case: Integrating spatial data with traditional data types for geographic data analysis in agriculture and forestry.

Matplotlib

  • Description: A comprehensive library for creating static, animated, and interactive visualizations.

  • Use Case: Visualizing agricultural data trends and environmental data in forestry.

NumPy

  • Description: Fundamental package for scientific computing with Python.

  • Use Case: Numerical analysis in soil science, genetics, and environmental modeling.

Pandas

  • Description: Data analysis and manipulation library.

  • Use Case: Analyzing agricultural data, crop yield data, and forestry statistics.

PyEcoLib

  • Description: A library for ecological modeling and simulation.

  • Use Case: Simulating ecological systems and analyzing forestry dynamics.

PyKrige

  • Description: Kriging toolkit for Python for interpolation of spatial data.

  • Use Case: Useful in agriculture for geostatistical interpolation, particularly in precision farming.

Rasterio

  • Description: A library for raster data processing.

  • Use Case: Working with satellite imagery and aerial photography in agriculture and forestry.

Scikit-learn

  • Description: Simple and efficient tools for predictive data analysis.

  • Use Case: Predictive modeling and analysis in agriculture, like crop yield prediction.

Seaborn

  • Description: Statistical data visualization library.

  • Use Case: Creating informative and attractive visualizations of agricultural data.

Statsmodels

  • Description: Statistical modeling and econometrics in Python.

  • Use Case: Econometric and statistical analysis of agricultural data.

Vega

  • Description: A visualization grammar for creating, saving, and sharing interactive visualization designs.

  • Use Case: Advanced data visualization in agriculture and forestry, especially for complex datasets.

Documentation:

GitHub Repository:

Documentation:

GitHub Repository:

Documentation:

GitHub Repository:

Documentation:

GitHub Repository:

Documentation:

GitHub Repository:

Documentation:

GitHub Repository:

Documentation:

GitHub Repository:

Documentation:

GitHub Repository:

Documentation:

GitHub Repository:

Documentation:

GitHub Repository:

Documentation:

GitHub Repository:

Documentation:

GitHub Repository:

Bokeh Documentation
Bokeh GitHub
EarthPy Documentation
EarthPy GitHub
Fiona Documentation
Fiona GitHub
GDAL Documentation
GDAL GitHub
GeoPandas Documentation
GeoPandas GitHub
Matplotlib Documentation
Matplotlib GitHub
NumPy Documentation
NumPy GitHub
Pandas Documentation
Pandas GitHub
PyEcoLib GitHub
PyEcoLib GitHub
PyKrige Documentation
PyKrige GitHub
Rasterio Documentation
Rasterio GitHub
Scikit-learn Documentation
Scikit-learn GitHub
Seaborn Documentation
Seaborn GitHub
Statsmodels Documentation
Statsmodels GitHub
Vega Documentation
Vega GitHub
Page cover image